439 research outputs found

    Studies of Bacterial Branching Growth using Reaction-Diffusion Models for Colonial Development

    Get PDF
    Various bacterial strains exhibit colonial branching patterns during growth on poor substrates. These patterns reflect bacterial cooperative self-organization and cybernetic processes of communication, regulation and control employed during colonial development. One method of modeling is the continuous, or coupled reaction-diffusion approach, in which continuous time evolution equations describe the bacterial density and the concentration of the relevant chemical fields. In the context of branching growth, this idea has been pursued by a number of groups. We present an additional model which includes a lubrication fluid excreted by the bacteria. We also add fields of chemotactic agents to the other models. We then present a critique of this whole enterprise with focus on the models' potential for revealing new biological features.Comment: 1 latex file, 40 gif/jpeg files (compressed into tar-gzip). Physica A, in pres

    Modeling branching and chiral colonial patterning of lubricating bacteria

    Full text link
    In nature, microorganisms must often cope with hostile environmental conditions. To do so they have developed sophisticated cooperative behavior and intricate communication capabilities, such as: direct cell-cell physical interactions via extra-membrane polymers, collective production of extracellular "wetting" fluid for movement on hard surfaces, long range chemical signaling such as quorum sensing and chemotactic (bias of movement according to gradient of chemical agent) signaling, collective activation and deactivation of genes and even exchange of genetic material. Utilizing these capabilities, the colonies develop complex spatio-temporal patterns in response to adverse growth conditions. We present a wealth of branching and chiral patterns formed during colonial development of lubricating bacteria (bacteria which produce a wetting layer of fluid for their movement). Invoking ideas from pattern formation in non-living systems and using ``generic'' modeling we are able to reveal novel survival strategies which account for the salient features of the evolved patterns. Using the models, we demonstrate how communication leads to self-organization via cooperative behavior of the cells. In this regard, pattern formation in microorganisms can be viewed as the result of the exchange of information between the micro-level (the individual cells) and the macro-level (the colony). We mainly review known results, but include a new model of chiral growth, which enables us to study the effect of chemotactic signaling on the chiral growth. We also introduce a measure for weak chirality and use this measure to compare the results of model simulations with experimental observations.Comment: 50 pages, 24 images in 44 GIF/JPEG files, Proceedings of IMA workshop: Pattern Formation and Morphogenesis (1998

    Counting Highly Cited Papers for University Research Assessment: Conceptual and Technical Issues

    Get PDF
    A Kuhnian approach to research assessment requires us to consider that the important scientific breakthroughs that drive scientific progress are infrequent and that the progress of science does not depend on normal research. Consequently, indicators of research performance based on the total number of papers do not accurately measure scientific progress. Similarly, those universities with the best reputations in terms of scientific progress differ widely from other universities in terms of the scale of investments made in research and in the higher concentrations of outstanding scientists present, but less so in terms of the total number of papers or citations. This study argues that indicators for the 1% high-citation tail of the citation distribution reveal the contribution of universities to the progress of science and provide quantifiable justification for the large investments in research made by elite research universities. In this tail, which follows a power low, the number of the less frequent and highly cited important breakthroughs can be predicted from the frequencies of papers in the upper part of the tail. This study quantifies the false impression of excellence produced by multinational papers, and by other types of papers that do not contribute to the progress of science. Many of these papers are concentrated in and dominate lists of highly cited papers, especially in lower-ranked universities. The h-index obscures the differences between higher- and lower-ranked universities because the proportion of h-core papers in the 1% high-citation tail is not proportional to the value of the h-index

    Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Swarming motility allows microorganisms to move rapidly over surfaces. The Gram-positive bacterium <it>Paenibacillus vortex </it>exhibits advanced cooperative motility on agar plates resulting in intricate colonial patterns with geometries that are highly sensitive to the environment. The cellular mechanisms that underpin the complex multicellular organization of such a simple organism are not well understood.</p> <p>Results</p> <p>Swarming by <it>P. vortex </it>was studied by real-time light microscopy, by <it>in situ </it>scanning electron microscopy and by tracking the spread of antibiotic-resistant cells within antibiotic-sensitive colonies. When swarming, <it>P. vortex </it>was found to be peritrichously flagellated. Swarming by the curved cells of <it>P. vortex </it>occurred on an extremely wide range of media and agar concentrations (0.3 to 2.2% w/v). At high agar concentrations (> 1% w/v) rotating colonies formed that could be detached from the main mass of cells by withdrawal of cells into the latter. On lower percentage agars, cells moved in an extended network composed of interconnected "snakes" with short-term collision avoidance and sensitivity to extracts from swarming cells. <it>P. vortex </it>formed single Petri dish-wide "supercolonies" with a colony-wide exchange of motile cells. Swarming cells were coupled by rapidly forming, reversible and non-rigid connections to form a loose raft, apparently connected <it>via </it>flagella. Inhibitors of swarming (<it>p</it>-Nitrophenylglycerol and Congo Red) were identified. Mitomycin C was used to trigger filamentation without inhibiting growth or swarming; this facilitated dissection of the detail of swarming. Mitomycin C treatment resulted in malcoordinated swarming and abortive side branch formation and a strong tendency by a subpopulation of the cells to form minimal rotating aggregates of only a few cells.</p> <p>Conclusion</p> <p><it>P. vortex </it>creates complex macroscopic colonies within which there is considerable reflux and movement and interaction of cells. Cell shape, flagellation, the aversion of cell masses to fuse and temporary connections between proximate cells to form rafts were all features of the swarming and rotation of cell aggregates. Vigorous vortex formation was social, i.e. required > 1 cell. This is the first detailed examination of the swarming behaviour of this bacterium at the cellular level.</p

    Self-Wiring of Neural Networks

    Full text link
    In order to form the intricate network of synaptic connections in the brain, the growth cones migrate through the embryonic environment to their targets using chemical communication. As a first step to study self-wiring, 2D model systems of neurons have been used. We present a simple model to reproduce the salient features of the 2D systems. The model incorporates random walkers representing the growth cones, which migrate in response to chemotaxis substances extracted by the soma and communicate with each other and with the soma by means of attractive chemotactic "feedback".Comment: 10 pages, 10 PostScript figures. Originally submitted to the neuro-dev archive which was never publicly announced (was 9710001
    • …
    corecore